Estimation with Right-Censored Observations Under A Semi-Markov Model.
نویسندگان
چکیده
The semi-Markov process often provides a better framework than the classical Markov process for the analysis of events with multiple states. The purpose of this paper is twofold. First, we show that in the presence of right censoring, when the right end-point of the support of the censoring time is strictly less than the right end-point of the support of the semi-Markov kernel, the transition probability of the semi-Markov process is nonidentifiable, and the estimators proposed in the literature are inconsistent in general. We derive the set of all attainable values for the transition probability based on the censored data, and we propose a nonparametric inference procedure for the transition probability using this set. Second, the conventional approach to constructing confidence bands is not applicable for the semi-Markov kernel and the sojourn time distribution. We propose new perturbation resampling methods to construct these confidence bands. Different weights and transformations are explored in the construction. We use simulation to examine our proposals and illustrate them with hospitalization data from a recent cancer survivor study.
منابع مشابه
Monitoring the censored lognormal reliability data in a three-stage process using AFT model
Improving the product reliability is the main concern in both manufacturing and service processes which is obtained by monitoring the reliability-related quality characteristics. Nowadays, products or services are the result of processes with dependent stages referred to as multistage processes. In these processes, the quality characteristic in each stage is affected by the quality characterist...
متن کاملExact MLE and asymptotic properties for nonparametric semi-Markov models
This article concerns maximum likelihood estimation for discrete time homogeneous nonparametric semi-Markov models with finite state space. In particular, we present the exact maximum likelihood estimator of the semi-Markov kernel which governs the evolution of the semi-Markov chain. We study its asymptotic properties in the following cases: (i) for one observed trajectory, when the length of t...
متن کاملTracking Interval for Doubly Censored Data with Application of Plasma Droplet Spread Samples
Doubly censoring scheme, which includes left as well as right censored observations, is frequently observed in practical studies. In this paper we introduce a new interval say tracking interval for comparing the two rival models when the data are doubly censored. We obtain the asymptotic properties of maximum likelihood estimator under doubly censored data and drive a statistic for testing the ...
متن کاملSemi-parametric modeling of excesses above high multivariate thresholds with censored data
How to include censored data in a statistical analysis is a recurrent issue in statistics. In multivariate extremes, the dependence structure of large observations can be characterized in terms of a non parametric angular measure, while marginal excesses above asymptotically large thresholds have a parametric distribution. In this work, a flexible semi-parametric Dirichlet mixture model for ang...
متن کاملKernel Ridge Estimator for the Partially Linear Model under Right-Censored Data
Objective: This paper aims to introduce a modified kernel-type ridge estimator for partially linear models under randomly-right censored data. Such models include two main issues that need to be solved: multi-collinearity and censorship. To address these issues, we improved the kernel estimator based on synthetic data transformation and kNN imputation techniques. The key idea of this paper is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Canadian journal of statistics = Revue canadienne de statistique
دوره 41 2 شماره
صفحات -
تاریخ انتشار 2013